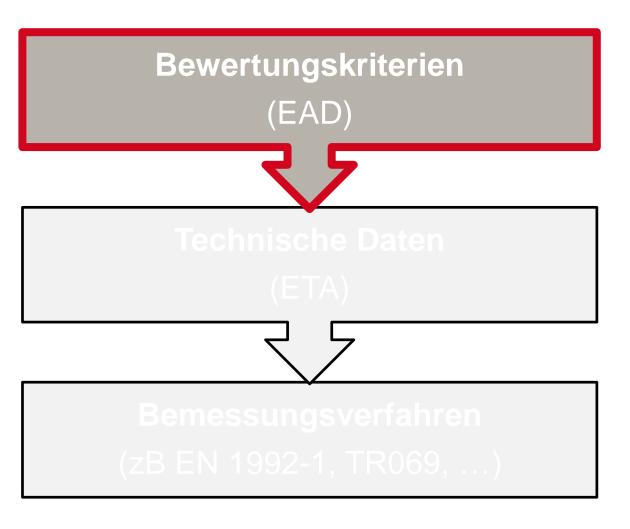


ZULASSUNGSWESEN

BEWERTUNGSKRITERIEN, TECHNISCHE DATEN UND BEMESSUNGSVERFAHREN WIRKEN ALS "SYSTEM" ZUSAMMEN

Europäische Bewertungsdokument (European Assessment Document - EAD)

Zusammenfassung der Verfahren und Kriterien für die Bewertung der Leistung eines Bauprodukts in Bezug auf seine wesentlichen Merkmale.


Europäische Technische Bewertung (European Technical Assessment - ETA)

Informationen zur Leistungsfähgkeit eines Bauprodukts in Bezug auf seine wesentlichen Merkmale, im Einklang mit dem betreffenden Europäischen Bewertungsdokument.

EN1992-1 beschreibt Verfahren zur Bemessung der Verankerung von Bewehrungseisen (Verbindung von tragenden/ nicht tragenden Bauteilen mit tragende Komponenten), die zur Abtragung von Lasten/ Lastweiterleitung in das Betonbauteil verwendet werden.

BEWERTUNGSKRITERIEN, TECHNISCHE DATEN UND BEMESSUNGSVERFAHREN WIRKEN ALS "SYSTEM" ZUSAMMEN

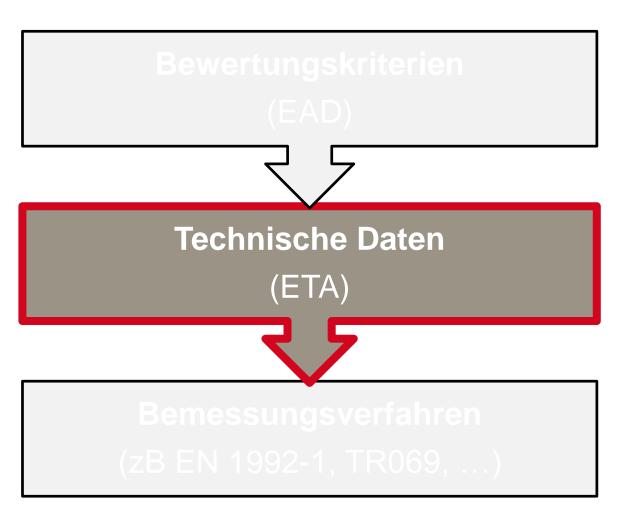
Europäische Bewertungsdokument (European Assessment Document - EAD)

Zusammenfassung der Verfahren und Kriterien für die Bewertung der Leistung eines Bauprodukts in Bezug auf seine wesentlichen Merkmale.

Europäische Technische Bewertung (European Technical Assessment - ETA)

Informationen zur Leistungsfähgkeit eines Bauprodukts in Bezug auf seine wesentlichen Merkmale, im Einklang mit dem betreffenden Europäischen Bewertungsdokument.

EN1992-1 beschreibt Verfahren zur Bemessung der Verankerung von Bewehrungseisen (Verbindung von tragenden/ nicht tragenden Bauteilen mit tragende Komponenten), die zur Abtragung von Lasten/ Lastweiterleitung in das Betonbauteil verwendet werden.


INHALT EINER EAD

Prüfstelle für Zulassungsversuche - Institut für konstruktiven Ingenieurbau (Universität für Bodenkultur Wien)

BEWERTUNGSKRITERIEN, TECHNISCHE DATEN UND BEMESSUNGSVERFAHREN WIRKEN ALS "SYSTEM" ZUSAMMEN

Europäische Bewertungsdokument (European Assessment Document - EAD)

Zusammenfassung der Verfahren und Kriterien für die Bewertung der Leistung eines Bauprodukts in Bezug auf seine wesentlichen Merkmale.

Europäische Technische Bewertung (European Technical Assessment - ETA)

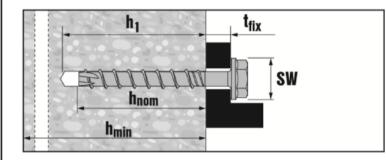
Informationen zur Leistungsfähgkeit eines Bauprodukts in Bezug auf seine wesentlichen Merkmale, im Einklang mit dem betreffenden Europäischen Bewertungsdokument.

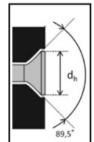
EN1992-1 beschreibt Verfahren zur Bemessung der Verankerung von Bewehrungseisen (Verbindung von tragenden/ nicht tragenden Bauteilen mit tragende Komponenten), die zur Abtragung von Lasten/ Lastweiterleitung in das Betonbauteil verwendet werden.

INHALT EINER ZULASSUNG

- Deckblatt mit Zulassungsnummer und Geltungsdauer
- Rechtsgrundlagen und allgemeine Bestimmungen
- Produktbeschreibung und Verwendungszweck
- Bemessung und Einbau der Dübel
- Charakteristische Werte der Tragfähigkeit [kN]

INHALT EINER ZULASSUNG



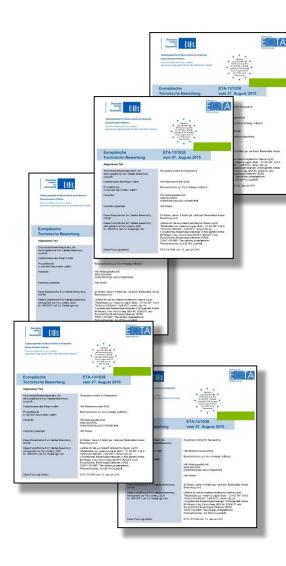

Tabelle B3: Mindestbauteildicke und minimale Achs- und Randabstände HUS3-6

Dübel Größe H	HUS3	6		
Länge des Dübels im Beton		h _{nom}	[mm]	55
Mindestbauteildicke		h _{min}	[mm]	100
gerissenen und	Minimaler Achsabstand	S _{min}	[mm]	35
ungerissenen Beton	Minimaler Randabstand	C _{min}	[mm]	35

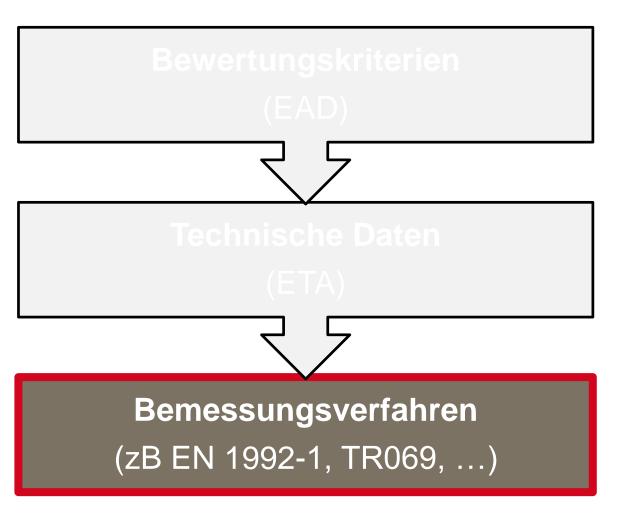
Tabelle B4: Mindestbauteildicke und minimale Achs- und Randabstände HUS3-8, 10 und 14

Dübel Größe HUS3				8			10			14		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im Beton h _{nom} [mm]		[mm]	50	60	70	55	75	85	65	85	115	
Mindestbauteildicke		h _{min}	[mm]	100	100	120	100	130	140	120	160	200
gerissenen und	Minimaler Achsabstand	S _{min}	[mm]	40	50	50	50	50	60	60	75	75
ungerissenen Beton	Minimaler Randabstand	C _{min}	[mm]	50	50	50	50	50	60	60	75	75

BEMESSUNGSPROGRAMME ALS UNTERSTÜTZUNG



BEMESSUNGSPROGRAMME ALS UNTERSTÜTZUNG



Bemessungssoftware

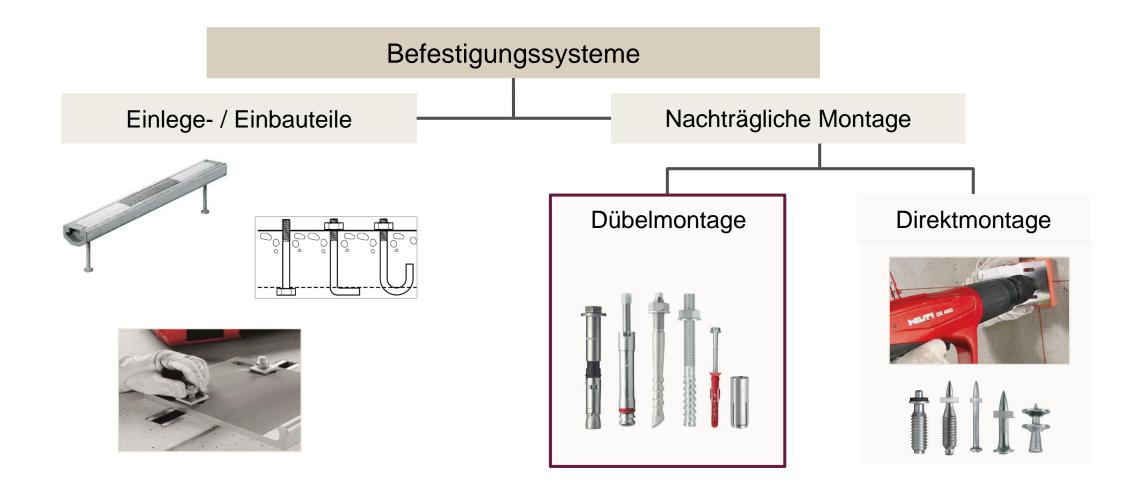
BEWERTUNGSKRITERIEN, TECHNISCHE DATEN UND BEMESSUNGSVERFAHREN WIRKEN ALS "SYSTEM" ZUSAMMEN

Europäische Bewertungsdokument (European Assessment Document - EAD)

Zusammenfassung der Verfahren und Kriterien für die Bewertung der Leistung eines Bauprodukts in Bezug auf seine wesentlichen Merkmale.

Europäische Technische Bewertung (European Technical Assessment - ETA)

Informationen zur Leistungsfähgkeit eines Bauprodukts in Bezug auf seine wesentlichen Merkmale, im Einklang mit dem betreffenden Europäischen Bewertungsdokument.


EN1992-1 beschreibt Verfahren zur Bemessung der Verankerung von Bewehrungseisen (Verbindung von tragenden/ nicht tragenden Bauteilen mit tragende Komponenten), die zur Abtragung von Lasten/ Lastweiterleitung in das Betonbauteil verwendet werden.

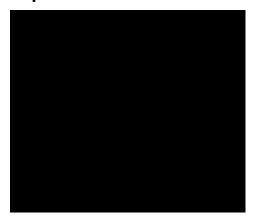
DÜBELSYSTEME UND WIRKUNGSWEISE

UNTERSCHEIDUNG VON BEFESTIGUNGSSYSTEMEN

BASISWISSEN

- Unterscheidung nach Material/Funktion
 - Mechanische Dübel
 - Chemische Dübel

- Unterscheidung nach Wirkprinzip
 - Reibschluss
 - Formschluss
 - Stoffschluss


DÜBEL UNTERSCHEIDEN SICH DURCH IHR WIRKPRINZIP

Wirkprinzipien von Dübeln

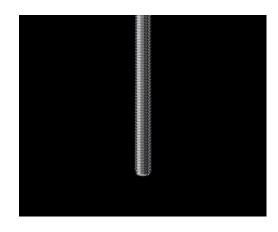
Reibschluss

Die Zugbelastung wird durch Reibung, die durch die Dübelspreizung entsteht, auf das Grundmaterial übertragen

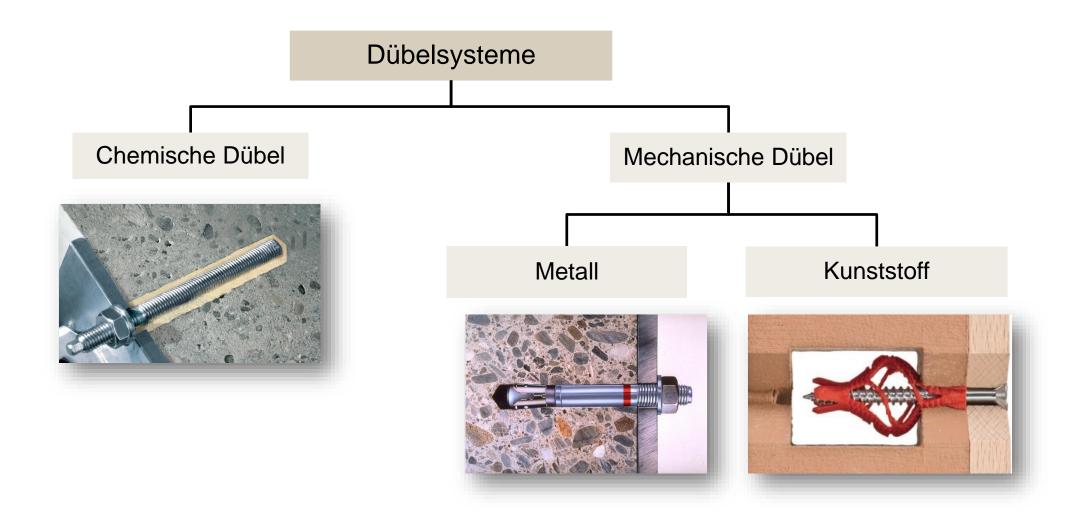
Mechanisch wirkender Spreizdübel

Formschluss

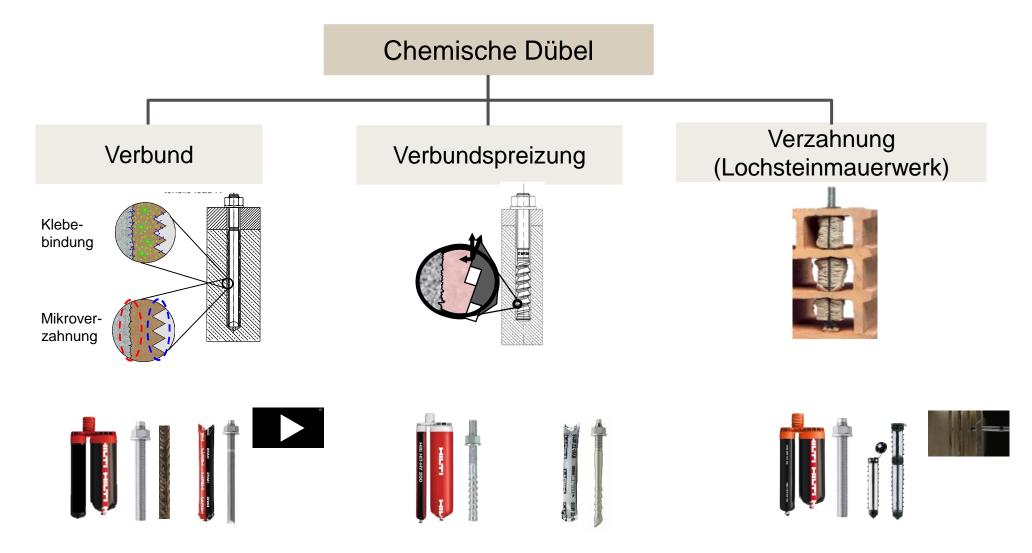
Während des Setzvorgangs entsteht ein Hinterschnitt, der die Zugkraft wie ein einbetonierter Kopfbolzen überträgt


Hinterschnittanker

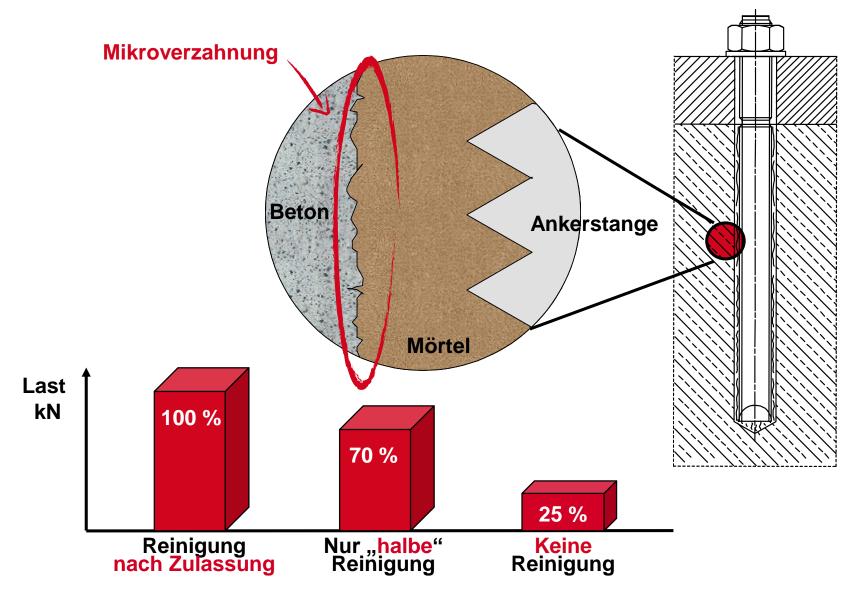
Stoffschluss


Die ausgehärtete Mörtelmischung schafft einen Verbund zwischen Dübel und Grundmaterial

Verbunddübel



UNTERSCHEIDUNG NACH DÜBELTYPEN

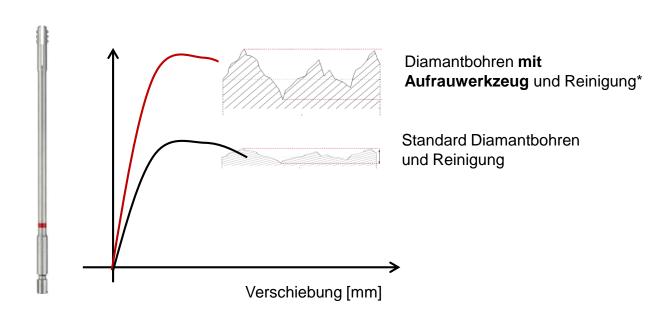


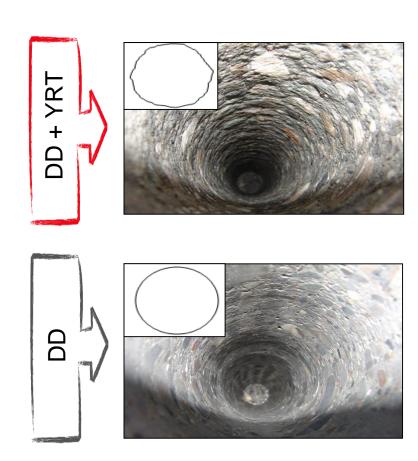
CHEMISCHE DÜBEL BESTEHEN AUS MÖRTEL UND ANKERSTANGE

BOHRLOCHREINIGUNG

BOHRLOCHREINIGUNG

Standard Methode

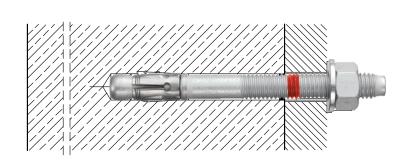

"Automatische Reinigung"
Hohlbohrer
HIT-HY 200-A und 200-R



DIAMANTBOHREN

Diamantbohren bei Dübelanwendungen

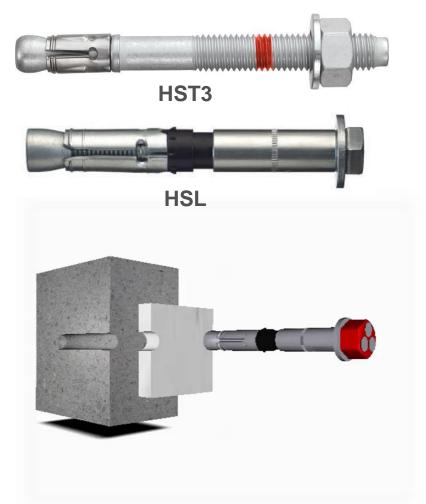
- Nicht die alle Dübel sind zugelassen für die Anwendung in diamantgebohrten Löchern
- Aufrauen mit TE-YRT Aufrauwerkzeug Teil der ETA Zulassung



MECHANISCHE DÜBEL (METALL)

Mechanische Dübel – Metall Nachspreizung (Reibschluss) Hinterschnitt (Formschluss)

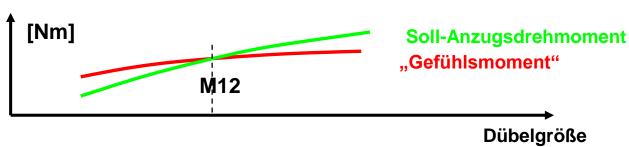
REIBSCHLUSS - SPREIZEN



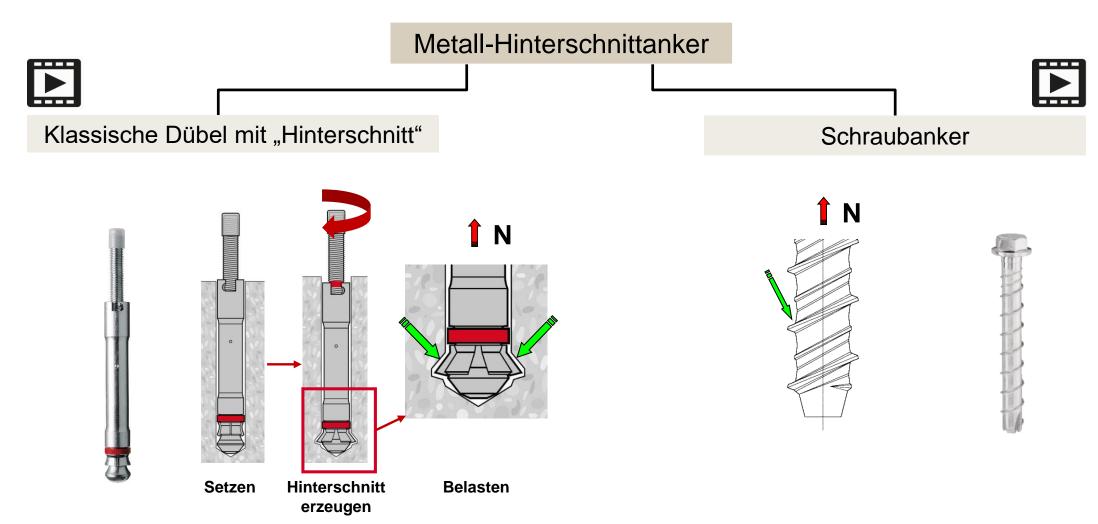
Funktionsprinzip

Die Zugkraft wird durch Reibung auf den Untergrund übertragen.

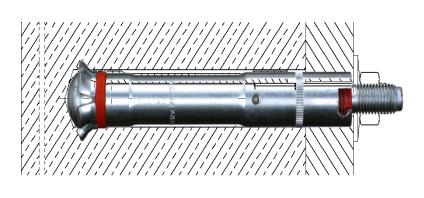
Die nötige Spreizkraft erzeugt der Konus beim Anspannen durch Verschiebung gegenüber der Spreizhülse



INSTALLATIONSDREHMOMENT

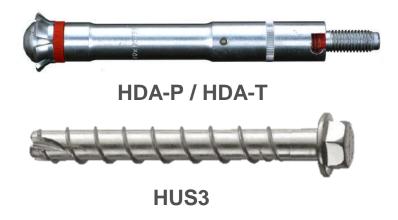


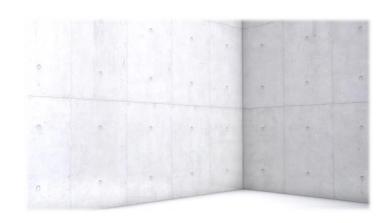
- Keine Kontinuität
- Verringerte Lasten (insb. Spreizdübel wie HSA & HST)
- Dübelversagen
- Zulassung erlischt (nachweisbar)
- Mögliche Folgen von Dübeln mit zu hohem Drehmoment ("überzogen"):
 - Kantenbruch, Spaltung oder Stahlversagen
- Mögliche Folgen von Dübel mit zu geringem Drehmoment
 - Keine ausreichende Spreizung somit kaum/keine Lasten



METALL-HINTERSCHNITTDÜBEL ÜBERTRAGEN DIE ZUGKRAFT DURCH MECHANISCHE VERZAHNUNG

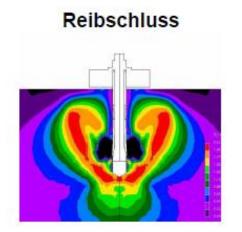
FORMSCHLUSS - HINTERSCHNITT

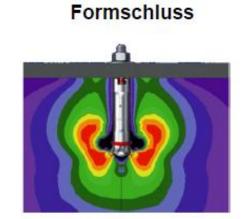


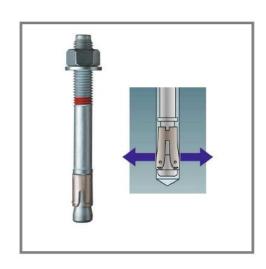

Funktionsprinzip

Beim Formschluss "hintergreift" das Ankersegment den Untergrund.

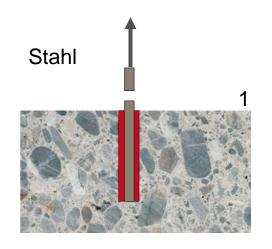
Dadurch steht die Zugkraft mit den auf den Untergrund wirkenden Abstützkräften im Gleichgewicht.

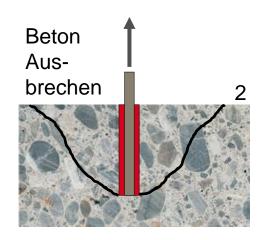

Beispiele

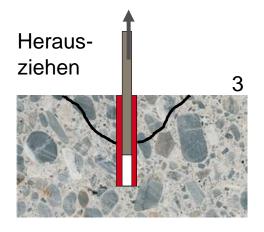


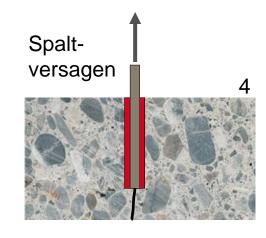


VERGLEICH DER WIRKUNGSPRINZIPIEN

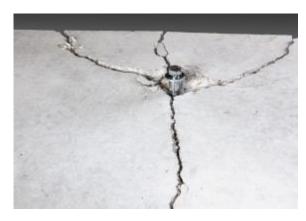


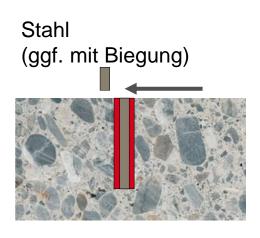




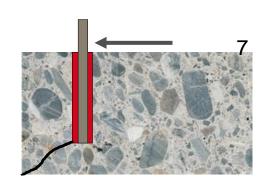

VERSAGENSMECHANISMEN

BEI DÜBELN KÖNNEN UNTER ZUG-/QUERLAST VERSCHIEDENE VERSAGENSARTEN AUFTRETEN









BEI DÜBELN KÖNNEN UNTER ZUG-/QUERLAST VERSCHIEDENE VERSAGENSARTEN AUFTRETEN

Betonkantenbruch

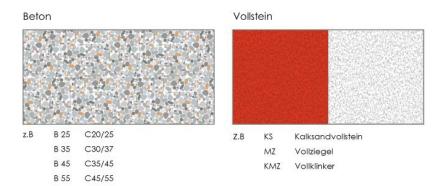
DÜBEL verpflichtet

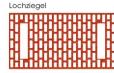
Praktische Anwendung Versuche am Bauwerk

Ing. Jürgen Pfeifer

... WEIL'S DEN NOCH IMMER NICHT GIBT ...

... NOCH
IMMER NICHT
JEDER ALLES
WEIß...





Untergrund?

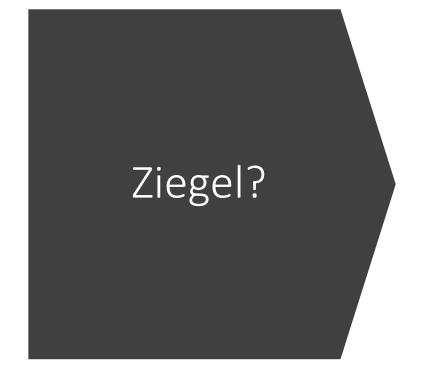
Vollmaterial

Lochsteine - Lochziegel

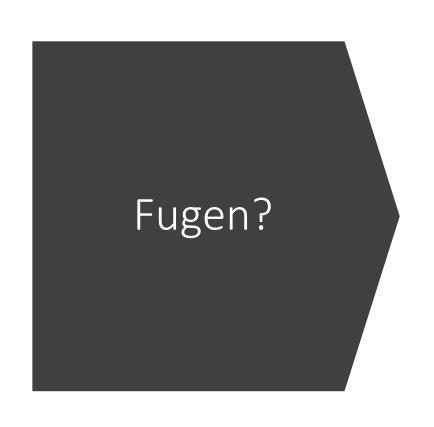
HLz Hochlochziegel
LHLz Leichtlochhochziegel
KHLz Hochlochklinker
LLP Leichtlanglochziegel

z.B KS

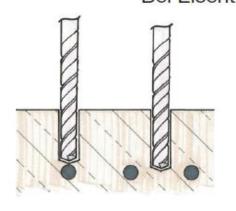
Lochsteine

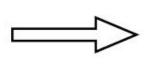

z.B KSL Kalksandlochstein

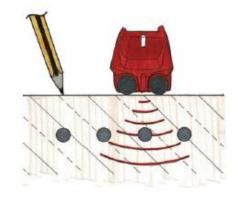
Leichtbauwerkstoffe

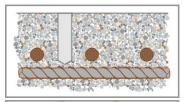

z.B Gipskartonplatten Faserplatten Spanplatten

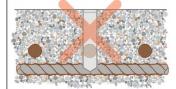
	Vollziegel	Lochziegel mit dicken Stegen	Lochziegel mit dünnen Stegen	Lochziegel mit großen Kammern	Hohlblocksteine
Bohrmehl- farbe hinter der Putz- schicht	Rot	Rot	Rot	Rot	Grau
Bohrfort- schritt	Konstant	Widerstand länger, kurzes Durchfallen	Widerstand kurz, schnelles Durch- brechen des Bohrers	Widerstand kurz, Bohrer fällt bis zur nächsten Kammer lang durch	Nach kurzem Wider- stand durch brechen einer Kammer
Mörtelfugen	Grau	Grau	Grau oder Klebe- fuge	Grau oder Klebefuge	Grau
Bsp.:	31				
Einschätzung tragender Ver- ankerungs- grund	mäßig	schlecht	schlecht	schlecht	schlecht

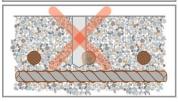


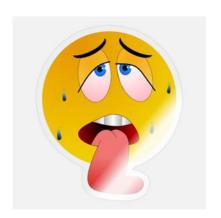


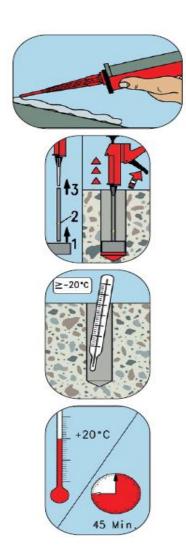


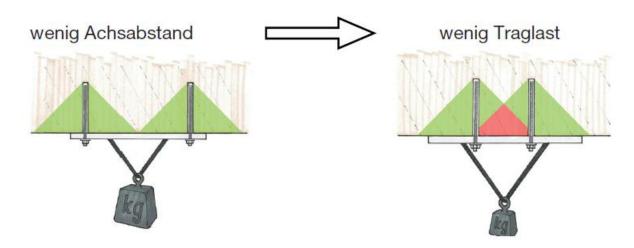












ACHSABSTAND

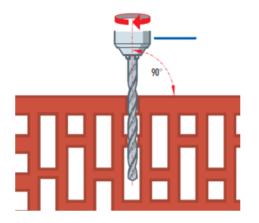
Achs- und Randabstände

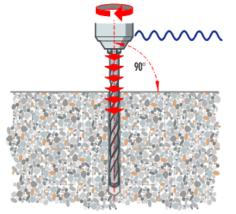
RANDABSTAND

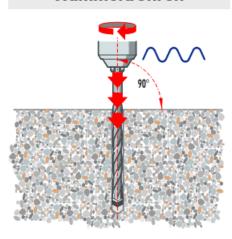
wenig Randabstand wenig Traglast Versagen bei zu geringem Randabstand

WURTH

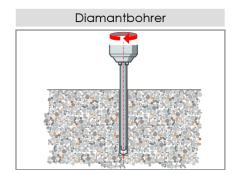
Achs- und Randabstände


Achs- und Randabstände


Drehbohren

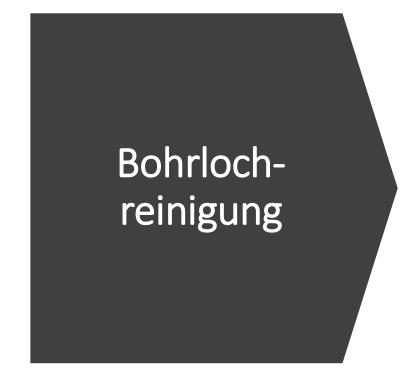

Vollmaterial mit geringer Festigkeit; außerdem Loch-/Hohlsteine

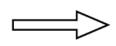
Schlagbohren



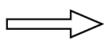
Hammerbohren

Vollmaterial mit festem Gefüge

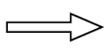



Bohren

BOHRLOCHREINIGUNG – ALTERNATIVEN



Ausblasen & Bürsten



Hohlbohrer/Saugbohrer*

Dübelsysteme ohne Bohrlochreinigung*

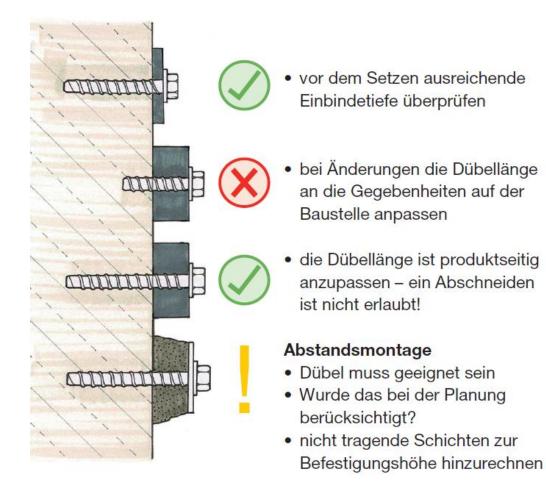
*Zulassung des Dübels beachten

Richtiges Dübelmaterial?

© Würth Handelsges.m.b.H., Böheimkirchen, 12/1/2022

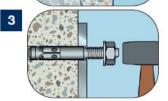
47

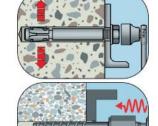
Richtige Anwendung?



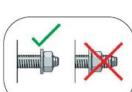
© Würth Handelsges.m.b.H.,
Böheimkirchen, 12/1/2022

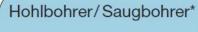
BEFESTIGUNGSHÖHE UND EINBINDETIEFE

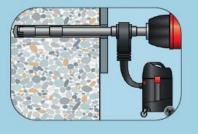

MECHANISCHE DÜBEL


Bohren + Ausblasen*

ODER




2

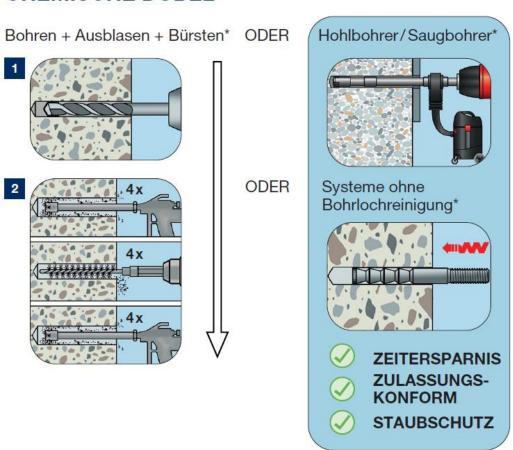


- ZEITERSPARNIS
- ZULASSUNGS-KONFORM
- **✓** STAUBSCHUTZ

Das richtige Setzwerkzeug verwenden* Spreizanker:

- Kalibrierter Drehmomentenschlüssel oder
- Systeme mit automatischer Aufbringung

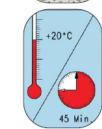
Betonschraube / Schraubanker:


Tangentialschlagschrauber

*Setzanweisung in der Zulassung beachten

CHEMISCHE DÜBEL

*Setzanweisung in der Zulassung beachten

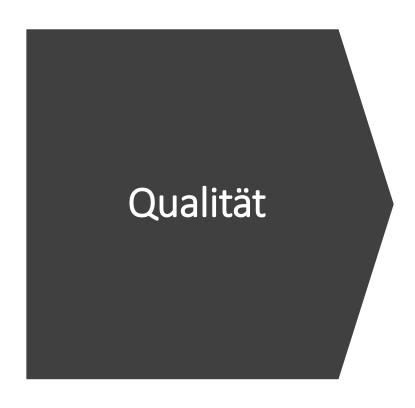

CHEMISCHE DÜBEL

13 2 11

5

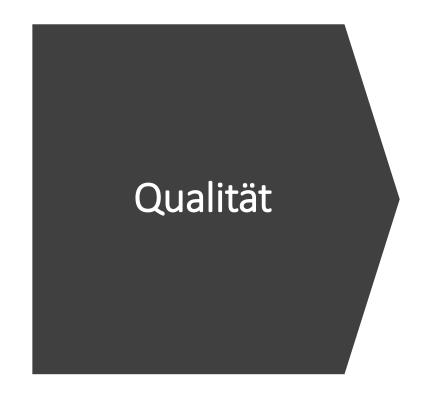
Bei Zwei-Komponentensystemen die ersten Hübe (= andrücken) verwerfen für eine vollständige Durchmischung.* Bei Verwendung einer neuen Kartusche ist auch auf eine vollständige Durchmischung zu achten. Zum Beispiel durch Verwendung eines neuen Mischers.

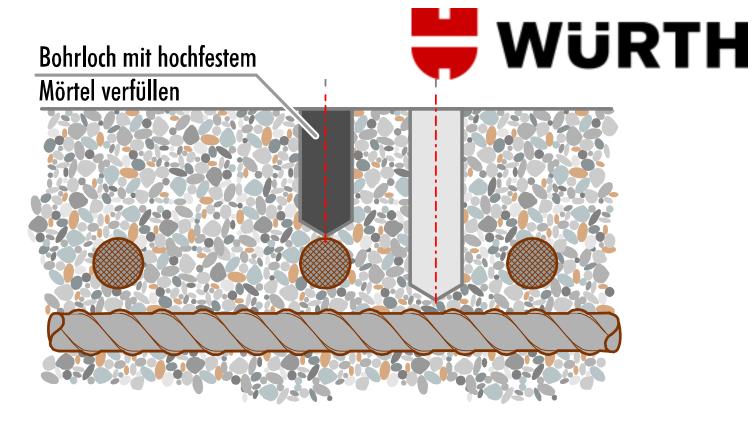
Das richtige Setzwerkzeug verwenden Lufteinschlüsse vermeiden*


Kontrollieren Sie die Verarbeitungszeit und Aushärtezeit*
Setztiefe markieren

Entscheidend ist die Bauteiltemperatur und die Temperatur des Mörtels + Ankerstange (nicht die Lufttemperatur) Aushärte- und Verarbeitungszeit nehmen bei zunehmender Temperatur ab, diese sind produktabhängig (Tabelle nur beispielhaft)

*Setzanweisung in der Zulassung beachten




52

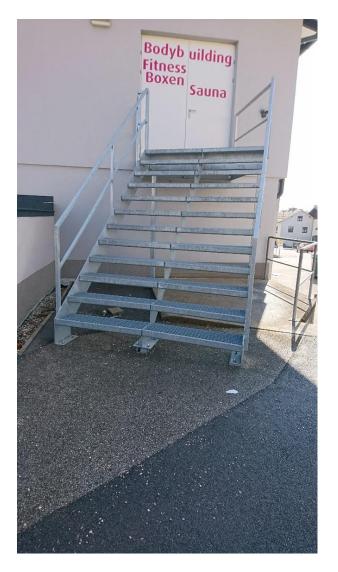
Baustelle (Anschrift)	Datum		
Überwachende Firma (Anschrift)	Bauleiter	MONTAGE-	
Ausführende Firma (Anschrift)	Monteur	PROTOKOLL	
Bauteil (Beschreibung)	Plan-Nr.	Position	
Außenanwendung:	Verankerungsgrund		
stat. Bemessung liegt vor:	Mauerwerk, Putz (7): Be	eton B Beton C	
Höhe über Gelände:	Bohren mit Schlag: 🚨 ja* 🗔 r	nein*	
Dübelsystem (ArtNr.):			
Chargen-Nr.:			
Zulassungsnummer:		nein*	
Geltungsdauer:			
Bohrlochtiefe:			
Art der Bohrlochreinigung:			
Art der Befestigung:	Einbausituation F	Boutelrand?	
an I I I I I I I I	und einzeichnen,		
Ø Durchgangsloch Anbauteil:	Lastangriffsrichtung angeben):	431 → 431 → ind	
Klemmstärke: Verankerungstiefe:	Plattendicke:	9	
	Piditeridicke:	Bautelrandi	
Randabstände (vor Ort messen):			
	Achsabstände (vor Ort messer		
c3 =	<u> </u>	=	
Setzwerkzeug (Beschreibung, ArtNr.):		nur chemische Befestigungen:	
	Verfallsdatum:		
Drehmomentschlüssel (Marke, Typ):	Temperatur Mörtel:		
Kalibrierdatum:	Aushärtezeit Bohrloch feucht: 🗀 ja* 🗀 i	nein*	
Montagedrehmoment	Schlupf bei der Montage (₹):		
(Anzugsdrehmonent):			
Anzahl der gesetzten Dübel:	usätzliches Blatt verwenden):		
Probebelastung:			
Verdrehwinkelprüfung:			
Bemerkungen:			

© Würth Handelsges.m.b.H.,
Böheimkirchen, 12/1/2022

4.3.1 Fehlbohrung

Auszug aus der DIBt "Hinweise für die Montage von Dübelverankerungen"

Fehlbohrungen sind in der Regel mit einem schwindarmen hochfesten Mörtel vollständig zu verschließen. Eine Fehlbohrung liegt auch vor, wenn ein Dübel ausgebaut wird.


Bei einer Fehlbohrung mit einer Tiefe >= hef/4 darf der Dübel im Achsabstand gleich dem dreifachen Bohrlochdurchmesser von einer Fehlbohrung gesetzt werden. Bei einer Fehlbohrung mit einer Tiefe <hef/4 darf der Dübel im Achsabstand gleich dem einfachen Bohrlochdurchmesser von der Fehlbohrung gesetzt werden.

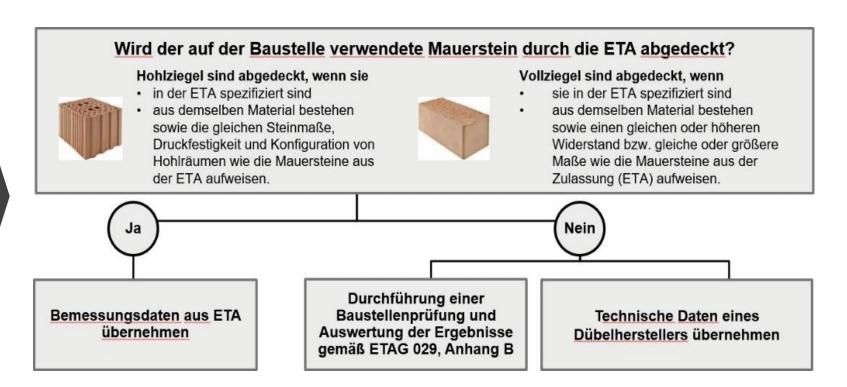
Grundlagen der Dübeltechnik

53

Qualität?

56

Qualität



57

Qualität?

Handelnde Personen

(am Beispiel TR051 Dibt)

Fachplaner – bestimmt die Vorgangsweise

Versuchsleiter – führt die Versuche durch

Sachkundiges Personal – setzt die Versuche für die Versuche

Versuchsmöglichkeiten

(am Beispiel TR051 Dibt)

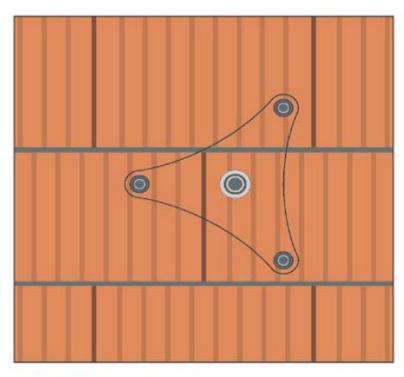
Auszugsversuche

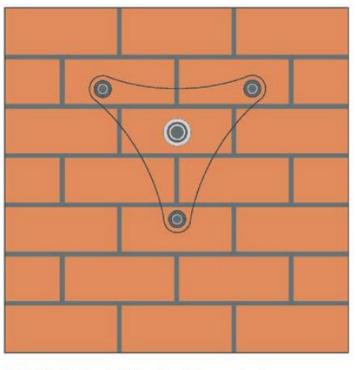
- bis zum Bruch (5-15 Versuche)
- KEINE WEITERE VERWENDUNG!

Probebelastungen

- hohes Lastniveau (15 Versuche)
- einwirkende Last x Sicherheit x 1/Beiwert Dübel
- KEINE WEITERE VERWENDUNG!

Abnahmeversuche – niedriges Lastniveau


- Ermittlung nach TR 051
- Verwendung Dübel möglich


PROTOKOLL

Versuche am Bauwerk

Bild 1: Beispiel für Abstützung bei Hochlochziegeln und Hohlsteinen aus Leicht- oder Normalbeton

Bild 2: Beispiel für Abstützung bei kleinformatigen Vollsteinen

Werte aus einer Zulassung sind immer maßgeblich -> Keine Erhöhung durch Versuche

Werte aus Versuchen müssen entsprechend den Vorgaben aus den Zulassungen bewertet werden